507 research outputs found

    Loading rate sensitivity of open hole composites in compression

    Get PDF
    The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature

    Multiphoton Absorption of Myoglobin–Nitric Oxide Complex: Relaxation by D-NEMD of a Stationary State

    Get PDF
    ABSTRACT: The photodissociation and geminate recombination of nitric oxide in myoglobin, under continuous illumination, is modeled computationally. The relaxation of the photon energy into the protein matrix is also considered in a single simulation scheme that mimics a complete experimental setup. The dynamic approach to non-equilibrium molecular dynamics is used, starting from a steady state, to compute its relaxation to equilibrium. Simulations are conducted for the native form of sperm whale myoglobin and for two other mutants, V68W and L29F, illustrating a fair diversity of spatial and temporal geminate recombination processes. Energy flow to the heme and immediate protein environment provide hints to allostery. In particular, a pathway of energy flow between the heme and the FG loop is illustrated. Although the simulations were conducted for myoglobin only, the thermal fluctuations of the FG corner are in agreement with the large structural shifts of FG during the allosteric transition of tetrameric hemoglobin

    Accessibility for Line-Cutting in Freeform Surfaces

    Get PDF
    Manufacturing techniques such as hot-wire cutting, wire-EDM, wire-saw cutting, and flank CNC machining all belong to a class of processes called line-cutting where the cutting tool moves tangentially along the reference geometry. From a geometric point of view, line-cutting brings a unique set of challenges in guaranteeing that the process is collision-free. In this work, given a set of cut-paths on a freeform geometry as the input, we propose a conservative algorithm for finding collision-free tangential cutting directions. These directions, if they exist, are guaranteed to be globally accessible for fabricating the geometry by line-cutting. We then demonstrate how this information can be used to generate globally collision-free cut-paths. We apply our algorithm to freeform models of varying complexity.RYC-2017-2264

    Efficient continuous collision detection for bounding boxes under rational motion

    Get PDF
    This paper presents a simple yet precise and efficient algorithm for collision prediction of two oriented bounding boxes under univariate (piecewise) rational motion. We present an analytic solution to the problem of finding the time of collision and the feature involved, or declaring that no collision should occur. Our solution can be applied to boxes of any size, under arbitrary rational rigid motion. The algorithm is based on the efficient examination of the Minkowski sum (MS) of the two boxes, using a spherical Gauss map dual representation, and a precise extraction of the collision time, if any, as a solution to a set of rational equations that are automatically derived. © 2006 IEEE.published_or_final_versio

    Continuous collision detection for ellipsoids

    Get PDF
    We present an accurate and efficient algorithm for continuous collision detection between two moving ellipsoids. We start with a highly optimized implementation of interference testing between two stationary ellipsoids based on an algebraic condition described in terms of the signs of roots of the characteristic equation of two ellipsoids. Then we derive a time-dependent characteristic equation for two moving ellipsoids, which enables us to develop a real-time algorithm for computing the time intervals in which two moving ellipsoids collide. The effectiveness of our approach is demonstrated with several practical examples. © 2006 IEEE.published_or_final_versio

    The Construction of Conforming-to-shape Truss Lattice Structures via 3D Sphere Packing

    Get PDF
    Truss lattices are common in a wide variety of engineering applications, due to their high ratio of strength versus relative density. They are used both as the interior support for other structures, and as structures on their own. Using 3D sphere packing, we propose a set of methods for generating truss lattices that fill the interior of B-rep models, polygonal or (trimmed) NURBS based, of arbitrary shape. Once the packing of the spheres has been established, beams between the centers of adjacent spheres are constructed, as spline based B-rep geometry. We also demonstrate additional capabilities of our methods, including connecting the truss lattice to (a shell of) the B-rep model, as well as constructing a tensor-product trivariate volumetric representation of the truss lattice - an important step towards direct compatibility for analysis.RYC-2017-2264

    Fractal Analysis of Protein Potential Energy Landscapes

    Full text link
    The fractal properties of the total potential energy V as a function of time t are studied for a number of systems, including realistic models of proteins (PPT, BPTI and myoglobin). The fractal dimension of V(t), characterized by the exponent \gamma, is almost independent of temperature and increases with time, more slowly the larger the protein. Perhaps the most striking observation of this study is the apparent universality of the fractal dimension, which depends only weakly on the type of molecular system. We explain this behavior by assuming that fractality is caused by a self-generated dynamical noise, a consequence of intermode coupling due to anharmonicity. Global topological features of the potential energy landscape are found to have little effect on the observed fractal behavior.Comment: 17 pages, single spaced, including 12 figure

    Action-derived molecular dynamics in the study of rare events

    Full text link
    We present a practical method to generate classical trajectories with fixed initial and final boundary conditions. Our method is based on the minimization of a suitably defined discretized action. The method finds its most natural application in the study of rare events. Its capabilities are illustrated by non-trivial examples. The algorithm lends itself to straightforward parallelization, and when combined with molecular dynamics (MD) it promises to offer a powerful tool for the study of chemical reactions.Comment: 7 Pages, 4 Figures (3 in color), submitted to Phys. Rev. Let

    Two-dimensional visibility charts for continuous curves

    Get PDF
    This paper considers computation of visibility for two-dimensional shapes whose boundaries are C1 continuous curves. We assume we are given a one-parameter family of candidate viewpoints, which may be interior or exterior to the object, and at finite or infinite locations. We consider how to compute whether the whole boundary of the shape is visible from some finite set of viewpoints taken from this family, and if so, how to compute a minimal set of such viewpoints. The viewpoint families we handle include (i) the set of viewing directions from infinity, (ii) viewpoints on a circle located outside the object (for inspection from a turntable), and (iii) viewpoints located on the walls of the shape itself. We compute a structure called a visibility chart, which simultaneously encodes the visible part of the shape's boundary from every view in the family. Using such a visibility chart, finding a minimal set of viewpoints reduces to the set-covering problem over the reals. Practical algorithms are obtained by a discrete sampling of the visibility chart. For exterior visibility problems, a reasonable approach is to compute an almost-optimal solution (in terms of number of viewpoints), which can be done in almost-linear time. For interior visibility problems, or when a more correct solution is required, we solve the general set-covering problem, guaranteeing an optimal solution but taking exponential time

    Synchronous vs. asynchronous dynamics of diffusion-controlled reactions

    Full text link
    An analytical method based on the classical ruin problem is developed to compute the mean reaction time between two walkers undergoing a generalized random walk on a 1d lattice. At each time step, either both walkers diffuse simultaneously with probability pp (synchronous event) or one of them diffuses while the other remains immobile with complementary probability (asynchronous event). Reaction takes place through same site occupation or position exchange. We study the influence of the degree of synchronicity pp of the walkers and the lattice size NN on the global reaction's efficiency. For odd NN, the purely synchronous case (p=1p=1) is always the most effective one, while for even NN, the encounter time is minimized by a combination of synchronous and asynchronous events. This new parity effect is fully confirmed by Monte Carlo simulations on 1d lattices as well as for 2d and 3d lattices. In contrast, the 1d continuum approximation valid for sufficiently large lattices predicts a monotonic increase of the efficiency as a function of pp. The relevance of the model for several research areas is briefly discussed.Comment: 21 pages (including 12 figures and 4 tables), uses revtex4.cls, accepted for publication in Physica
    • …
    corecore